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Abstract
Computational exploration of chemical space is crucial in modern chem-
informatics research for accelerating the discovery of new biologically active
compounds. In this study, we present a detailed analysis of the chemical li-
brary of potential glucocorticoid receptor (GR) ligands generated by the mo-
lecular generator, Molpher. To generate the targeted GR library and construct
the classification models, structures from the ChEMBL database as well as
from the internal IMG library, which was experimentally screened for bio-
logical activity in the primary luciferase reporter cell assay, were utilized. The
composition of the targeted GR ligand library was compared with a reference
library that randomly samples chemical space. A random forest model was
used to determine the biological activity of ligands, incorporating its applic-
ability domain using conformal prediction. It was demonstrated that the GR
library is significantly enriched with GR ligands compared to the random li-
brary. Furthermore, a prospective analysis demonstrated that Molpher suc-
cessfully designed compounds, which were subsequently experimentally con-
firmed to be active on the GR. A collection of 34 potential new GR ligands
was also identified. Moreover, an important contribution of this study is the
establishment of a comprehensive workflow for evaluating computationally
generated ligands, particularly those with potential activity against targets
that are challenging to dock.
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1 | INTRODUCTION

Chemical space is understood as a multi-dimensional
space that represents the functional and structural prop-
erties of molecules, along with their interrelationships
[1]. Historically, this concept has been predominantly
applied [2] to small organic compounds [3] emphasizing
the vastness of this space [4], estimated at approximately
1033 compounds [4a] conforming to Lipinski’s rule of five
[5]. However, the application of the chemical space con-
cept extends beyond organic molecules to encompass a
variety of molecular types, demonstrating its practical
utility in fields ranging from drug discovery [6] to natu-
ral products [7], material science [8], food [9] and flavor
[10] chemicals, peptides [6c, 11] or metal complexes [12],
thereby highlighting its diverse relevance across various
scientific disciplines.

Two main computational approaches of de novo ex-
ploration of the chemical space of organic molecules
have been well-established in cheminformatics research
[13]: genetic algorithms (GAs) and deep generative mod-
eling. GAs [14] take a combinatorial approach that in-
volves mixing scaffolds, functional groups, and relevant
fragments to obtain the desired molecular compound.
GAs can be further classified as either structure-based or
ligand-based methods, depending on the use of a 3D pro-
tein target structure [14a,15]. Deep generative modeling
[16] uses various architectures of deep neural networks
to generate new compounds based on learned patterns.

A primary objective in generating a new virtual li-
brary is to design biologically active compounds. There-
fore, the biological activity of these compounds must be
predicted as reliably as possible. Quantitative Structure-
Activity Relationship (QSAR) models are widely used for
this purpose [17], but they can only reliably predict bio-
logical activity for new molecules structurally similar to
those used in the training sets. The region of chemical
space where reliable predictions can be made is defined
by the model‘s applicability domain (AD) [18]. This

concept is particularly relevant for molecular generation,
which aims to introduce new chemotypes. Accurately
predicting the biological activity of new chemotypes is
challenging because they often reside outside the AD of
QSAR models. Therefore, it is essential to integrate AD
into QSAR predictions for generated molecules to miti-
gate the occurrence of false positives.

In a previous study [19], we developed Molpher, a li-
gand-based GA approach for the systematic exploration
of chemical space. This process involves creating a mo-
lecular path between start and target structures through
the iterative application of molecular morphing oper-
ators (Figure 1). To ascertain the synthetic accessibility
of the morphs [20], the Synthetic Accessibility Score
(SAscore) [21] is integrated within the morphing proc-
ess, facilitating the immediate rejection of synthetically
non-feasible structures. Molpher was utilized to con-
struct a library of hard-to-synthesize compounds [22],
from which the SYBA synthetic accessibility score was
subsequently derived [23]. Molpher is available as a Py-
thon open-source library molpher-lib [24] facilitating
widespread use by the broader scientific community.

Given that the start and target structures are active at
the same molecular target, their intermediate molecules
encountered along the morphing path, known as
morphs, should form a focused virtual library enriched
in active compounds. In this study, the potential of Mol-
pher to propose biologically active compounds was eval-
uated by generating two virtual libraries: a library of glu-
cocorticoid receptor (GR) ligands (GRML library) and a
library of random compounds (RML library).

The glucocorticoid receptor [25] is a compelling drug
target [26] due to its pivotal role in modulating in-
flammatory and immune responses, making it crucial for
treating a range of conditions, including autoimmune
diseases, allergies, and certain cancers [27]. Its ther-
apeutic relevance is underscored by its ability to influ-
ence gene expression, offering potential pathways for de-
veloping novel treatments that can precisely target
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cellular processes involved in disease progression [28].
In this study, the GR was selected as the primary focus,
aligning with our long-standing interest and extensive
experience in steroid receptors, evidenced by the devel-
opment, optimization, and establishment of specialized
bioassays for their profiling [29]. In addition, the GR’s
structurally inherent flexibility, posing significant chal-
lenges in ligand docking [30], presents a unique oppor-
tunity to apply and validate our newly developed work-
flow.

The quality of both GRML and RML libraries was as-
sessed by analyzing the structures and scaffolds of com-
pounds predicted to be active by the QSAR model. Given
its robust performance in various molecular machine
learning tasks, random forest (RF) with compounds en-
coded by ECFP fingerprints was chosen for QSAR mod-
eling [31]. The AD of the RF models was determined by
Mondrian Conformal prediction (CP) [32]. Two QSAR
models were developed: one using data from the

ChEMBL17 database and the other from the ChEMBL33
database, with both training datasets enriched by addi-
tional compounds from the internal library of the In-
stitute of Molecular Genetics (IMG) in Prague. The
GRML and RML libraries were compared with the input
compounds used to generate them, as well as retro-
spectively with GR actives that appeared in the ChEMBL
database between its versions 17 and 33. Additionally, a
set of new potentially active compounds with novel
chemical scaffolds was proposed that are, thus, worthy
of subsequent experimental validation. The results dem-
onstrate the usefulness of Molpher in generating virtual
libraries enriched in active ligands. Moreover, an im-
portant contribution of this study is the establishment of
a comprehensive workflow for evaluating computation-
ally generated ligands, particularly those with potential
activity against targets that are challenging to dock.

F I G U R E 1 Principles of the molecular morphing approach. Molecular morphing generates a path in chemical space consisting of
structures (referred to as morphs) lying between a start molecule MS and a target molecule MT. In each iteration, a set of morphs is
generated by randomly applying morphing operators, that represent simple structural modifications (mutations), such as the addition or
removal of an atom or bond, at molecules from the previous iteration. In each iteration, the morphs are accepted for the next iteration with
the probability derived from their distance to the target molecule.
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2 | DATA AND METHODS

2.1 | Data sources

In this study, the following two sources of bioactivity
data were used (Figure 2):

1 ChEMBL [33], a publicly available, manually curated
database of bioactive molecules, was utilized to select
ligands of the human glucocorticoid receptor
(ChEMBL ID: CHEMBL2034), encompassing both
binding and functional assays. The decision to analyze
these diverse assays collectively was made due to their
complementary insights into compound interactions
with the GR. The rationale for merging data from
binding and functional assays is reinforced by the
EC50 values from the low nanomolar range for both
dexamethasone and prednisolone across all assay
types. The compounds with an EC50 of 1 μM or lower
were considered active. For a compound with several
EC50 values, their average and standard deviation were
calculated. The compound was considered active if the
average EC50 was 1 μM or lower and the standard de-
viation was less than 0.5. If the standard deviation was
higher than 0.5 μM, the compound was manually ex-
amined, and its inclusion or exclusion was determined
based on the findings reported in the corresponding
publications. Two versions of the ChEMBL database
were utilized: version 17 (released in August 2013)
and version 33 (released in May 2023).

2 IMG library of GR ligands was constructed by screen-
ing a large library of 24,511 compounds. This ex-
tensive collection consisted of a diverse set, bioactive
set, and proprietary set.

The diverse set, obtained from ChemBridge [34], con-
tained 9,845 drug-like compounds strictly conforming to
Lipinski’s rule-of-five [5a], thus exhibiting molecular
weights of 500 Dalton or less, a maximum of 10 hydro-
gen bond acceptors, no more than 5 hydrogen bond do-
nors, and a cLogP value of 5 or below. Additionally, the
topological polar surface area (TPSA) [35] of these mole-
cules was below 100. Compounds with undesirable
chemical groups, including Michael acceptors, crown
ethers and their analogs, disulfides, and epoxides, were
deliberately excluded from this set. The bioactive set of
3,111 compounds was represented by carefully selected
sets from established sources such as Prestwick Chem-
ical Library [36], Sigma LOPAC Library of Pharmacolog-
ically Active Compounds [37], and the NIH Clinical Col-
lection [38], containing pharmacologically active
compounds, many of which were approved as drugs or
have been tested in human clinical trials. The

proprietary set consisted of a diverse set of 11,555
compounds obtained from various academic institutions.

The deck of 24,511 compounds was tested in the pri-
mary luciferase reporter cell assay. The generation of the
GR-LBD U2OS stable reporter cell line was described
earlier [29]. Cells were grown for 48 h preceding the ex-
periment in the phenol red-free DMEM supplemented
with 4% C/D FBS and 4 mM glutamine. After 48 h, cells
were trypsinized, counted, and seeded at a density of
10,000 cells/well in white opaque cell culture 384-well
plates (Corning Inc., NY, USA). Compounds were di-
luted in DMSO and stored in the polypropylene 384-well
plates. They were transferred to cells by JANUS Auto-
mated Workstation (PerkinElmer, Inc.) equipped with
Pin tool (V&P Scientific, Inc., San Diego, CA, USA) at
1 μM final concentration. After incubation for 18 h, luci-
ferase activity was determined using the One-Glo Luci-
ferase Assay System according to the manufacturer’s
protocol. Luminescence was recorded by an EnVision
(PerkinElmer, Inc.) plate reader using 1 s of signal in-
tegration, and data were analyzed using proprietary
LIMS software ScreenX [39].

The B-score [40], a normalization technique em-
ployed in high throughput screening, was utilized to as-
sess the activity of compounds in the primary screen. By
adjusting for spatial and systematic errors across assay
plates, this method aids in the identification of true bio-
logical activity, mitigating the influence of plate position
and other systematic biases. A compound was consid-
ered active if a B-score of 5 or more was exhibited. The
screening resulted in the IMG library of 154 GR ligands,
comprising 26 bioactive compounds, 84 diverse com-
pounds, and 45 proprietary compounds. Because the
compounds were tested at only one concentration in the
primary screen, no EC50 values are available. Therefore,
if multiple compounds represented a Bemis-Murcko
(BM) scaffold, one was randomly included in the GRML
input set.

2.2 | Project workflow

The scheme of the project workflow (Figure 2) is pro-
vided here, with individual steps elaborated in more
depth in the following sections.

1 Data generation. Molpher [19] was used to create two
virtual libraries. The Glucocorticoid Morphing Library
(GRML) was generated from active compounds
(termed GR inputs) with unique Bemis-Murcko (BM)
scaffolds [41] from the ChEMBL17 and IMG libraries.
As a baseline, the Random Morphing Library (RML)
was generated from compounds with unique BM
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scaffolds (termed Random inputs) randomly selected
from the ZINC database [42]. Input compounds were

encoded as 1,024-bit Morgan fingerprints with a
radius of 2 (i. e., ECFP4 fingerprints [43]).

F I G U R E 2 Project workflow. The glucocorticoid receptor (GR) morphing library (GRML) and the Random morphing library (RML)
were generated from their respective input libraries (termed GR inputs and Random inputs) using the Molpher algorithm. A random forest
classifier, trained on two distinct datasets (the numbers in brackets indicate the number of GR actives/inactives), was employed to predict
active compounds in both GRML (termed GR actives) and RML (termed Random actives) libraries. Subsequent analysis of both morphing
libraries, as well as the GR and Random actives, was conducted through similarity analysis, scaffold analysis, and prospective validation.
For the design of active ligands, the number of GR actives was narrowed down using 2D (structural) filtering, followed by pharmacophore
modeling and molecular docking. The final set of potential GR ligands was prioritized using a random forest regression QSAR model to
predict their biological activity (pEC50).
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2 Data classification. Virtual compounds from both
GRML and RML libraries were classified as active or
inactive using a random forest classification (RFC)
model, with its applicability domain (AD) [44] eval-
uated by conformal prediction (CP) [32b]. Compounds
were encoded as 1,024-bit Morgan fingerprints with
radius 2 [43]. For RFC training and testing, active li-
gands from the ChEMBL were merged with the active
ligands from the IMG library. By merging two data-
sets, more data for training was obtained enriching,
thus, the number and diversity of compounds. Despite
mixing EC50 threshold from ChEMBL and B-score
threshold from IMG libraries, the critical aspect is the
maintained clear distinction between active and in-
active compounds, ensuring the reliability of the clas-
sifiers.

3 Compounds predicted as active in the GRML library
are termed GR actives, and compounds predicted as
active in the RML library are termed Random actives.
Two RFC models were constructed, differing only in
training data:

4 Model17, trained on 527 active and 123 inactive GR li-
gands obtained from the ChEMBL17 and IMG library
(Figure 2), was deployed for a retrospective validation.
It was applied to the GRML library, and the com-
pounds predicted to be active were compared to ex-
perimentally validated actives that were added to the
ChEMBL between its versions 17 and 33. Restricting
the model to an older ChEMBL dataset enforced an
actual time-split scenario, representing a more real-
istic use case: training the model on data available up
to a certain point and testing its predictive abilities
against data that become available later.

5 Model33, trained on 720 active and 194 inactive GR
ligands obtained from the ChEMBL33 and IMG li-
brary (Figure 2), was established to evaluate the im-
pact of a more comprehensive training set on pre-
dictive accuracy for in both the GRML and RML
libraries and it provides insights into the predictive
enhancements achievable through a more extensive
and more diverse dataset.

6 Data analysis. The quality of the GRML and RML li-
braries was evaluated by analyzing the GR and Ran-
dom actives considering both their complete struc-
tures and BM scaffolds.

7 Design of active ligands. A computational workflow
was developed to prioritize the generated GR actives
for further use. The workflow consists of several filter-
ing steps, both 2D (structural and drug-like filters)
and 3D (pharmacophore modeling, molecular dock-
ing), followed by compound ranking based on pEC50
predicted by a random forest regression QSAR model.

2.3 | Data generation

The generation of the GRML and RML virtual libraries
involved the following steps:

1 The first step was the construction of the GR and Ran-
dom inputs, from which both morphing libraries were
generated. The GRML library was generated from in-
put compounds with unique BM scaffolds [41] bio-
logically active on human GR. These compounds were
obtained from the ChEMBL17 and IMG libraries.
Their BM scaffolds were constructed, and one com-
pound was included in the GR inputs for each scaf-
fold. Whenever multiple compounds shared the same
BM scaffold, the one with the best biological activity
was selected to represent the scaffold. The RML li-
brary was generated from compounds randomly se-
lected from the ZINC database [42] with unique BM
scaffolds not present in the GR inputs. The number of
compounds in the Random inputs matched those in
the GR inputs.

2 In each input set, all possible compound pairs were
formed. For each compound pair, two morphing paths
were generated: the first path started from compound
#1 and ended with compound #2, while the second
path ran in the opposite direction, beginning with
compound #2 and ending with compound #1.

3 Only morphs dissimilar to their starting or target com-
pounds were included in the morphing library. Two
compounds were considered different if their Tanimo-
to coefficient Tc [45], calculated for compounds en-
coded as 1,024-bit Morgan fingerprints with a radius
of 2 [43], was equal to or less than 0.7.

2.4 | Data classification

Molecular generation focuses on the design of new com-
pounds, many of which fall outside the applicability do-
main (AD) of QSAR models [18]. Consequently, the bio-
logical activity of such compounds can be challenging to
predict, emphasizing the importance of considering the
AD of any used model. This study assessed the AD of the
binary classification RFC model using Conformal Pre-
diction (CP) [32b]. In binary classification, compounds
are labeled either as active or inactive. However, CP
modifies this approach by predicting regions containing
all possible label combinations. In the binary CP classi-
fication, the following four possible regions are formed:
active (contains only the active label), inactive (contains
only the inactive label), both (contains both active and
inactive labels), or empty (contains no label). The active
and inactive regions indicate the parts of chemical space
where the model is confident in its predictions at a user-
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defined confidence level. If a compound is assigned to
both regions, the model is less confident about the pre-
diction, indicating that the compound shares similarities
with both active and inactive classes. In such cases, addi-
tional information is required to make a single class pre-
diction [32e]. If a compound falls into the empty region,
the model is unsure about the prediction, suggesting that
the compound is dissimilar to active and inactive classes.
These compounds are considered to lie outside the mod-
el‘s AD.

Two forms of CP exist: transductive CP (TCP) [46]
and inductive CP (ICP) [32b,47]. TCP is an online ap-
proach where the model is retrained for each new object
[48]. For QSAR modeling, the offline ICP approach is
more suitable. In the ICP, data are divided into three
sets, each containing both active and inactive com-
pounds (Figure 3):

1 Proper training set (PTrS). The model is trained on this
data.

2 Calibration set (CS). Each compound in this set is pre-
dicted using the trained model and further charac-
terized by its nonconformity score α, which quantifies
the novelty of the compound compared to the training
data. In the Mondrian Conformal Prediction (MCP)
[32e,49] used in this study, the nonconformity scores
are generated for each class separately, making the
MCP suitable for imbalanced data sets.

3 Test set (TS) is used to evaluate the model’s predictive
performance. For each test compound, its p-value is
calculated. The p-value represents the proportion of
compounds in the calibration set with nonconformity
scores equal to or lower than the test compound’s α.
In the MCP, two p-values are obtained and compared
with the user-defined significance level ε. Note that
the concept of p-value in the CP is not equivalent to
the one used in inferential statistics.

Under the CP framework, prediction errors are
straightforward to interpret. For instance, with a

F I G U R E 3 Conformal prediction. (a) The input dataset was partitioned into a training set (TrS) and a test set (TS). The training set
was subsequently divided into 10 folds. Each fold was used as the calibration set (CS), while the remaining nine folds constituted the
proper training set (PTrS). The RFC model was trained using the PTrS and then employed to predict instances of the CS, producing their
class membership probabilities. Using these probabilities, the margin error function yielded the nonconformity scores αi. The
nonconformity scores αi of the CS compounds then formed two calibration lists, one for each class. (b) An illustrative example of the
computation of p-values for ’new instances’ based on predicted probabilities from the RF model. The nonconformity score α of the new
instance for the active class equals 0.18, and for the inactive class equals 0.82. Arrows indicate the placement of the nonconformity scores
of the new instance within both active and inactive calibration lists. The p-value for a class is computed as the proportion of instances in
the calibration set that have a higher nonconformity score than the new instance when it’s assumed to belong to that class. A high p-value
for a class means the new instance fits well with that class, while a low p-value suggests it’s an unusual member. The new instance is
assigned to the class with a p-value higher than a predefined significance level ε (ε=0.1 in this example). If none of the classes meets this
threshold, the prediction can be labeled as empty; if both classes meet this threshold, the prediction is marked as both.
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significance level ε=0.1, the true label will fall within
the predicted confidence regions in at least 90% of cases,
where 90% is the confidence level defined as 1� 1ε. This
property, known as validity, is underpinned by the math-
ematical principles of the CP [32a]. Another critical as-
pect of the CP is efficiency [50], the proportion of correct
single-class predictions. A model is more efficient if few-
er non-informative predictions (i. e., both or empty re-
gions) are obtained. Both the validity and efficiency of
models are assessed with test set data.

In this study, a variant of the ICP, known as the
Cross-Conformal Prediction (CCP) [51], was used. The
dataset was randomly split into the training (TrS) and
test (TS) set in an 80 :20 ratio preserving the active/in-
active ratio (Figure 3). In each iteration, the TrS was div-
ided into ten non-overlapping folds. Each fold was then
used as the calibration set (CS), with the remaining 9/10
of data serving as the proper training set (PTrS). In this
way, it was ensured that all labeled data were used for
training. Two calibration nonconformity score lists, one
for each label (active and inactive), were calculated for
every fold. For each TS compound in every fold, two p-
values, corresponding to the position of the TS com-
pound within the active and inactive nonconformity
score lists, were calculated. Two final compound’s p-val-
ues were obtained as the average across all ten folds.

Nonconformity scores αi were calculated using the
margin error function [52] defined as

ai ¼ 0:5 �
bP yijxið Þ � maxy6¼yibP yjxið Þ

2
(1)

where bP yijxið Þis the probability obtained by the under-
lying RFC model for the active label and maxy6¼yibP yjxið Þis
the maximum probability obtained for the inactive label.
The CCP was implemented using the nonconformist
package, version 2.1.0 [53].

Morphs in the GRML and RML libraries were classi-
fied as active or inactive using an RFC QSAR model.
Each compound was encoded as a 1,024-bit Morgan fin-
gerprint with a radius of 2 (i. e., ECFP4 fingerprint) [43].
The following hyperparameters were optimized via
Bayesian optimization: the number of trees in the forest
(ranging from 10 to 500), the number of features (rang-
ing from 10 to 1,024), the depth of the tree (ranging from
1 to 200) and the split criterion (gini or entropy). All oth-
er hyperparameters were set to their implicit values. The
objective function for the optimization was model accu-
racy evaluated on the test set (Acctest).

Acctest ¼
number of correct predictions
total number of predictions ¼

TP þ TN
TP þ TN þ FPþ FN

(2)

where TP=True Positives, TN=True Negatives, FP=

False Positives, and FN=False Negatives. The accuracy
was preferred over balanced accuracy for hyper-
parameter optimization because the dataset‘s imbalance
was mild [54] (approx. 1 :4 in favor of the active class)
and the primary interest was in correctly classifying the
majority (active) class. The RFC is quite robust to such
mild imbalance due to its ensemble nature and the ran-
domness in selecting samples and features. Moreover,
models optimized for accuracy surprisingly yielded high-
er balanced accuracy scores (data not shown), suggesting
that optimizing for accuracy aligned better with the proj-
ect‘s objectives.

To ensure a reliable model error calculation and to
minimize random effects, the stratified training/test set
split was performed 100 times for each model. The RFC
was implemented in Scikit-learn version 1.3.0 [55]. The
hyperparameters were optimized using the hyperopt li-
brary, version 0.2.7 [56]. All cheminformatics calcu-
lations were conducted using the RDKit toolkit version
2023.3.2 [57].

2.5 | Data analysis

The quality of the GRML library was evaluated using
similarity, scaffold, and prospective validation analyses
(Table 1).

2.5.1 | Similarity analysis

The similarity analysis evaluated the novelty of the
GRML library by comparing the structures of its com-
pounds to those in the RML library. Three levels of the

T A B L E 1 The number of active morphs in the GRML and
RML libraries predicted by RFC Model17 and Model33. A
confidence level of 90% was used. Compounds predicted as active
in at least one split were considered active. The GRML and RML
library comprised 999,015 compounds and 1,346,310 compounds,
respectively. Compound counts are provided in parentheses.

GRML RML

Model17 24.68% (246,642) 10.19% (137,216)

Model33 43.27% (432,296) 24.49% (329,763)
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analysis were used, addressing various aspects of
similarity dependencies:

* the coverage analysis.
* the novel compound analysis.
* the KL divergence analysis.

The coverage analysis evaluated chemical space cov-
ered by the GRML and RML libraries by comparing the
structures of morphs with the GR and Random inputs.
Tc was calculated between each morph predicted to be
active and its most similar compound from the input set.
The compounds were encoded as 1,024-bit Morgan fin-
gerprints with a radius of 2. The highest Tc distributions
of the GR actives, Random actives, GR inputs, and Ran-
dom inputs were compared.

In the novel compound analysis, actives predicted by
Model17 and Model33 were analyzed in relation to the
GR inputs. A new dataset termed Novel set, consisting of
active compounds added to the ChEMBL database be-
tween its versions 17 and 33, was created. The Novel set
was divided into three subsets based on the Tc between
each active in the Novel set and its most similar active in
the ChEMBL17: low similarity subset (Tc<0.4), medium
similarity subset (0.4�Tc�0.7), and high similarity sub-
set (Tc>0.7). For each of these subsets, the highest Tani-
moto coefficients between the subset actives and GR ac-
tives predicted by either Model17 or Model33 were used
to establish Tc distributions (Figure 4).

The assumption is that the active compounds pre-
dicted by Model17 will be closer to the high similarity
subset than the low similarity one and that the active
compounds predicted by Model33 will be roughly equal-
ly distant from the low similarity, medium similarity,
and high similarity subsets. Furthermore, Model33, con-
taining the Novel set as the part of its training set,
should have a higher average Tc than Model17 for every
subset.

The KL divergence analysis aimed to determine
whether Molpher generates ligands from a subspace
known to be enriched with active ligands. This was ach-
ieved by comparing the Novel set, containing newly
characterized active ligands not used as molecular
morphing inputs, with the GRML and RML morphing li-
braries. The assumption was that the distribution of the
highest Tc between the Novel set and the RML or GRML
libraries would be shifted towards higher Tc values for
the GRML compared to the RML library. The difference
between these two distributions was quantified using
Kullback-Leibler (KL) divergence [58], an information
theory-based measure commonly used to assess how one
probability distribution diverges from a second (i. e., ref-
erence) probability distribution. To circumvent zero

values in KL divergence calculations, Laplace smoothing
[59] was employed. KL divergence was calculated using
the entropy() function from the SciPy library version
1.11.1. [60], with the logarithm of base 2.

2.5.2 | Scaffold analysis

The scaffold analysis aimed to assess the diversity of
chemical scaffolds generated by Molpher. This was ach-
ieved by comparing BM scaffolds [41] from the GR and
Random input sets, GRML and RML libraries, and GR
and Random active sets.

2.5.3 | Prospective validation

The goal of the prospective validation was to identify
novel BM scaffolds that were rediscovered through the
morphing process and were annotated as actives in the
ChEMBL33 database yet were not used as inputs for the
morphing. For this purpose, the BM scaffolds of Mod-
el17 and Model33 inputs were juxtaposed with those of
GR and Random actives, and the results were analyzed.

F I G U R E 4 Novel compound analysis. The Novel set was
formed by the GR actives added to the ChEMBL database between
its versions 17 and 33. Based on the highest Tc to the ChEMBL17
GR actives, the Novel set was divided into three subsets: (a) low
similarity subset (Tc<0.4), (b) medium similarity subset
(0.4�Tc�0.7), and (c) high similarity subset (Tc>0.7). For
illustrative purposes, a few examples of the highest Tcs between
Novel subset compounds and the GR actives predicted by either
Model17 or Model33 are depicted by dashed lines. The
distributions of these Tcs were constructed for each Novel subset.
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2.5.4 | Design of active ligands

Although the active morphs were classified as such with
a high degree of confidence, there was a need to further
prioritize them based on their structure and other prop-
erties important for ligand-GR binding. Thus, a multi-
step virtual screening workflow was established
(Figure 5). Its steps are described in more detail in the
following sections.

1 In the 2D filtering step, compounds with undesirable
substructures and compounds that could not be con-
sidered drug-like were removed.

2 In the pharmacophore modeling step, a pharmaco-
phore model was constructed, and only compounds
that conformed to the pharmacophore model were
passed to the subsequent step. This pharmacophore
filtering ensured that any potential ligand would like-
ly bind to the GR through the established binding
mode. While this method might reject compounds ex-
hibiting novel binding modes, its inclusion was

justified by the increased confidence in the
subsequent active compound identification and priori-
tization.

3 In the molecular docking step, compounds that passed
the previous step were docked into the ligand-binding
domain of the GR. Once their optimum poses were es-
tablished, the pharmacophore model developed in the
last step was applied once more. The preplacement of
the pharmacophore modeling before the docking in
step 2. offers significant advantages. It establishes a
good initial pose placement, thus accelerating the
docking procedure considerably, as it obviates the ne-
cessity for conformer generation and advanced pose
placement strategies. This acceleration is particularly
beneficial in systems such as the GR, which exhibit
suboptimal docking performance in terms of AUC
[30].

4 In the random forest regression step, compounds were
ranked by their pEC50 predicted by a random forest
regression (RFR) model. This model‘s training set
comprised 89 ChEMBL33 compounds that conformed
to the constructed pharmacophore model.

F I G U R E 5 The workflow of the design of active ligands. The workflow consists of several consecutive steps during which proposed
ligands are gradually filtered based on their drug-like, structural, and 3D properties. Subsequently, ligands are ranked based on their
biological activity predicted by a random forest regression model and manually annotated by an experienced organic chemist.
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2.5.5 | 2D filtering

Compounds with undesirable substructures were ex-
cluded using NIBR substructure filters [61] designed by
Novartis to validate and prioritize potential active com-
pounds. In addition, the use of NIBR filters is recom-
mended before the application of MolSkill [62]. Com-
pound drug-likeness was assessed by two methods: QED
[63] and MolSkill [62]. QED is a well-established method
based on molecular properties and structural descriptors
correlating with favorable pharmacokinetics and safety
profiles. MolSkill is a recently developed approach based
on utilizing artificial intelligence learning-to-rank tech-
niques on feedback obtained from 35 chemists at No-
vartis over several months. All filters were used with the
following thresholds recommended by their respective
authors: NIBR severity score<10, QED>0.4 and Mol-
Skill<9.

2.5.6 | Pharmacophore modeling

The GR pharmacophore model was developed in the
Pharmacophore Query Editor from the Molecular Oper-
ating Environment 2019 (MOE) [64]. Though multiple
pharmacophore models have been developed for the GR
[65], consensus among them remains elusive. Thus, a
new pharmacophore model was constructed to utilize
the latest published data and our internal GR agonist in-
formation. To ensure the generality of the pharmaco-
phore model, PDB structures were selected based on the
2D structural diversity of GR agonists. Five distinct ago-
nist structures were used: one steroidal agonist (dex-
amethasone, PDB ID: 1P93 [66]) and four non-steroidal
agonists each representing a unique structural class (pyr-
azole-based agonist – PDB ID: 3E7 C [67], indazole-
based agonist – PDB ID: 4CSJ [68], pyrimidine-based ag-
onist – PDB ID: 6EL7 [69], and next-gen indazole-based
agonist – PDB ID: 7PRX [70]). Using the Alignment/Su-
perpose tool in the MOE 2019, 3D protein-agonist com-
plexes were superimposed, and the aligned coordinates
of the ligands were retained for subsequent steps with-
out alterations. Conformers for all input molecules were
generated with the Stochastic Conformation Search
method in the MOE 2019 using the MMFF94x force field
and employing the following implicit settings: a rejection
limit of 200, an iteration limit of 200, an energy window
of 100, and a conformation limit of 200.

The pharmacophore model was validated using the
GR data from the DUD� E benchmark set [30], which
contains 468 active molecules and 15,150 inactive (de-
coy) compounds with similar physicochemical properties
to the active ones. Pharmacophore model quality was

evaluated using the positive likelihood ratio (LR+ ) and
model sensitivity (Sen). LR+ measures how much more
likely a pharmacophore model is to return a positive re-
sult for an active compound than for an inactive com-
pound. The higher the LR+ , the better the pharmaco-
phore model is. LR+ is defined as

LRþ ¼
Sen

1 � Spe ¼
TPR

1 � TNR (3)

where specificity Spe (True Negative Rate, TNR) is the
proportion of known inactive compounds correctly iden-
tified as not fitting the pharmacophore model and sensi-
tivity Sen (True Positive Rate, TPR) is the proportion of
known active compounds correctly identified by the
pharmacophore model

Sen ¼
TP

TPþ FN
(4)

A high sensitivity is essential to ensure the pharma-
cophore model does not falsely reject active compounds.
The combined use of the LR+ and Sen offers a compre-
hensive perspective on the performance of pharmaco-
phore models. There is a trade-off between these met-
rics: while a model with high Sen may detect most of the
actives, it may also produce more false positives, which
LR+ helps to account for. Partial matching was em-
ployed in the present work to achieve an optimal bal-
ance between LR+ and Sen. Partial matching refers to
the concept that a molecule needs to match only a subset
of all the features of a pharmacophore model to be con-
sidered a hit. This approach provides flexibility, recog-
nizing that not all features identified in a pharmaco-
phore model may be required for activity. It can also
help to identify molecules with novel structures or scaf-
folds that might not precisely match the used pharmaco-
phore.

2.5.7 | Molecular docking

Using MOE 2019 [64], each conformation that passed
the previous step was docked within the ligand binding
domain of the crystal structure of dexamethasone bound
to the GR (PDB ID: 1P93). [66] The Triangle Matcher
method and the London dG scoring function were used
for placement, with five poses retained. Refinement was
conducted using the Rigid Receptor method and the
GBVI/WSA dG scoring, resulting in a single pose. For
each optimal pose, the previously developed pharmaco-
phore model was reapplied. In this step, absolute
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positions were used, with molecules assumed to be pre-
aligned and stationary in space.

2.5.8 | Random forest regression

Since the morphs were classified as active or inactive
with a high (90%) confidence level, their pEC50 was
subsequently estimated using the RFR model without
conformal prediction. To build the RFR model, the fol-
lowing set consisting of 89 compounds was constructed:

1 GR actives from the ChEMBL33 database. 558 ligands
with EC50 values of 2 μM or less were included in the
data set. This limit was chosen because experimental
groups typically report ligands as inactive above this
concentration without providing their respective EC50

values. If a compound had multiple EC50 values, its
standard deviation was calculated. If the standard de-
viation was less than or equal to 0.5 μM and the aver-
age was less than 2 μM, the average was used as the
compound‘s EC50. Otherwise, the publications in
which the compound activity measurements were re-
ported were checked manually, and the decision of
whether or not to include the compound in the data
set was made based on the obtained insights.

2 The previously developed pharmacophore model was
applied to the compounds assembled in the previous
step, filtering out 469 and retaining 89 ligands.

To provide an unbiased and robust evaluation of RFR
performance, 100 random training-test splits with a ratio
of 80 :20 were performed. Similarly to RFC, each input
compound was encoded as a 1,024-bit Morgan finger-
print with a radius of 2, and the following hyper-
parameters were optimized: the number of trees in the
forest (ranging from 10 to 500), the number of features
(ranging from 10 to 1,024), the depth of the tree (ranging
from 1 to 200) and the split criterion (squared error, ab-
solute error, friedman mse or poisson). All other hyper-
parameters were set to their implicit values. The ob-
jective function for RFR hyperparameter optimization
was R2testdefined as

R2test ¼ 1 �
Pn

i¼1 yi � ŷið Þ2
Pn

i¼1 yi � yð Þ2
(5)

where yiis the true test set value, ŷiis the predicted test
set value, and yis the mean of true test set values. The
RFR was implemented in the Scikit-learn version 1.3.0
[55], and the hyperparameters were optimized via the
Bayesian optimization using the hyperopt library,

version 0.2.7/[56]. All cheminformatics calculations were
conducted using the RDKit toolkit version 2023.3.2 [57].

3 | RESULTS AND DISCUSSION

3.1 | Data generation

The GR input set consists of 249 active compounds with
unique BM scaffolds originating from the ChEMBL17
[33a] (95 ligands) and IMG (154 ligands) libraries. Sim-
ilarly, the Random input set comprises 249 compounds
randomly selected from the ZINC20 database [42] From
the GR and Random input sets, the GRML virtual library
consisting of 999,015 compounds and the RML virtual li-
brary of 1,346,310 compounds (Figure 2) were generated
by molecular morphing.

3.2 | Data classification

The best hyperparameters of Model17 were 242 trees,
327 features, a tree depth of 122, and Gini impurity as
the split criterion. Similarly, the optimum hyper-
parameters of Model33 were 178 trees, 325 features, a
tree depth of 198, and entropy as the split criterion. The
AD of optimized models was considered by utilizing the
cross-conformal prediction. Though in typical CP classi-
fication problems, an 80% confidence level is conven-
tionally adopted [71], in this study, a 90% confidence
level (i. e., a significance level ε=0.1) was employed to
reduce the potential for false positives and to provide a
more conservative estimate, thus reinforcing the reli-
ability and robustness of the model‘s predictions. A CP
model is considered valid if its validity is higher than its
confidence level [32b]. For the chosen confidence level
of 90%, Model17 was valid in 99 out of 100 splits, with
an average validity of 0.97. Similarly, Model33 was valid
in 92 out of 100 splits with an average validity of 0.92
(Figure 6). These high validity scores underscore the ro-
bustness and reliability of both Model17 and Model33.
However, the trade-off between validity and efficiency
[32b,e,72] resulted in relatively low average efficiency
for both models: 0.11 and 0.24 for Model17 and Model33,
respectively.

A comparison of the RML and GRML libraries re-
vealed significant differences in the number of predicted
actives, depending on the model (Table 1). When Mod-
el17 was used, the GRML library contained approx-
imately 2.5 times more predicted actives than the RML
library. In contrast, when predictions were made with
Model33, the GRML library had about 1.8 times more
predicted actives than the RML library. These findings
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suggest that the GRML library is enriched with more
predicted actives than the RML library. Furthermore,
Model33, trained on a larger dataset, inherently encom-
passes a greater scope of information than Model17. As a
result, the GRML library showed a 1.7-fold increase in
predicted actives when Model33 was used compared to
Model17. Similarly, the RML library showed a 2.5-fold
increase in predicted actives when classified with Mod-
el33. These results underscore the significant influence
of the complexity of training data on a model‘s pre-
diction accuracy.

The number of splits is another factor that influences
the confidence of predictions. The more splits in which a
compound is predicted as active, the higher the con-
fidence associated with that prediction. For example, if a
compound is predicted as active in all 100 splits, this in-
dicates the highest confidence level. However, setting
such a stringent criterion can be overly restrictive. The
interplay between the number of splits and the con-
fidence in predicted activity displays an inverse relation-
ship with the number of compounds identified as active.
In essence, as the confidence, assessed by the number of
splits, in prediction increases, the number of predicted
actives tends to decrease. An analysis was conducted to
find the optimal balance between these two effects
(Table 2). A threshold of a minimum of 50 splits was de-
termined as the optimal criterion, ensuring both a suffi-
cient number of predicted actives and a reasonable de-
gree of confidence in their predicted activity. At this
threshold, approximately 12 times more actives were

predicted in the GRML library with Model33 than with
Model17. Similarly, the RML library showed a 10-fold in-
crease in the number of actives predicted with Model33.
These findings highlight the importance of considering
the number of splits when setting a threshold for the
confidence of predictions.

The GRML and RML morphs predicted by both Mod-
el17 and Model33 as active at a confidence level of 90%
and in at least 50 splits are available as Supporting In-
formation.

3.3 | Data analysis

3.3.1 | Similarity analysis

3.3.1.1 | Coverage analysis
The highest Tc distributions between the active and in-
put sets for both Model17 and Model33 are shown in
Figure 7. Based on the Tc, each compound was assigned
to one of three subsets: low similarity subset (Tc<0.4),
medium similarity subset (0.4�Tc�0.7) and high sim-
ilarity subset (Tc>0.7).

The distribution of similarities between the GR ac-
tives and GR inputs is right-skewed and does not contain
highly similar compounds (Figure 7a and Figure 7b).
Most GR actives can be found in the low similarity sub-
set (Table 3). Specifically, for Model17, 68% (1,318 out of
1,933) of the GR actives have low similarity to the GR
inputs, and for Model33, 76% (17,044 out of 22,308) of

F I G U R E 6 The efficiency and validity of Model17 (a) and Model33 (b) at the 90% confidence level (green, horizontal line) in 100
splits. A model is considered valid if its validity is higher than its confidence level.
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the GR actives display the same degree of similarity.
These results indicate that, despite utilizing a conformal
classifier, which inherently restricts predictions to with-
in the model‘s applicability domain, Molpher can gen-
erate chemically novel actives beyond the conventional
similarity search range.

Comparing the GR actives vs. the Random inputs
(Figure 7c and Figure 7d) provides an insight into the
distance of the morphing library from the general syn-
thetically accessible chemical background. The high
presence of compounds in the low similarity subset
(1,834 out of 1,933 for Model17 and 21,788 out of 22,308
for Model33) confirms the assumption that the GRML
actives are distant from the general chemical back-
ground, as morphing paths between the GR inputs are
focused on the narrower part of chemical space.

Comparing the Random actives vs. the GR inputs
(Figure 7e and Figure 7f), 84% (149 out of 177) of com-
pounds are found to exhibit low similarity for Model17,

and 95% (4,095 out of 4,309) for Model33. This indicates
that the Random actives are more dissimilar to the GR
inputs than the GR actives, which can be attributed to
the Random actives originating from different regions of
chemical space than the GR actives.

Comparing the Random actives vs. the Random in-
puts (Figure 7g and Figure 7h), the number of the low-
similarity actives produced by morphing between the
Random inputs (148 for Model17 and 4,156 for Model33)
is significantly lower than those produced by morphing
between the GR inputs (1,318 for Model17 and 17,044
for Model33, Figure 7a and Figure 7b). This suggests that
they likely originate from distinct regions of chemical
space. Moreover, from the comparison of Random ac-
tives vs. Random inputs (Figure 7g and Figure 7h, 148
low-similarity compounds for Model17 and 4,156 low-
similarity compounds for Model33) with Random actives
vs. GR inputs (Figure 7e and Figure 7f, 149 low-sim-
ilarity compounds for Model17 and 4,095 low-similarity

T A B L E 2 The number of morphs predicted as active across various splits. Actives in both the GRML and RML libraries were
predicted by RFC Model17 and Model33 using a 90% confidence level. The optimum level of 50 splits in bold. Compound counts are
provided in parentheses.

&clineb;GRML &clineb;RML

# splits Model17 Model33 Model17 Model33

100 0% (0) 0.01% (81) 0% (0) 0.0002% (3)

90 0.003% (28) 0.17% (1,665) 0% (1) 0.007% (105)

80 0.012% (127) 0.42% (4,273) 0.0005% (7) 0.03% (411)

70 0.04% (382) 0.83% (7,813) 0.002% (28) 0.08% (1,082)

60 0.09% (939) 1.39% (13,951) 0.006% (87) 0.17% (2,293)

50 0.19% (1,933) 2.23% (22,308) 0.01% (177) 0.32% (4,309)

40 0.39% (3,918) 3.42% (34,208) 0.03% (439) 0.59% (7,946)

30 0.79% (7,922) 5.24% (52,331) 0.079% (1,067) 1.07% (14,421)

20 1.69% (16,957) 8.29% (82,835) 0.21% (2,828) 2.03% (27,388)

10 4.29% (42,913) 14.55% (145,391) 0.75% (10,156) 4.59% (61,842)

0 24.68% (246,642) 43.27% (432,296) 10.19% (137,216) 24.49% (329,763)

T A B L E 3 The counts of morphs predicted to be active by Model17 and Model33 in various highest Tc distributions. GRi – GR inputs,
Ri – Random inputs, GRa – GR actives, Ra – Random actives. Compounds were encoded as 1,024 bits long Morgan2 fingerprints.

Distribution
Low similarity
(Tc<0.4)

Medium similarity
(0.4�Tc�0.7)

High similarity
(Tc>0.7) Exact match

Model17 GRa vs. GRi 1,318 598 17 2

Ra vs. GRi 149 27 1 0

GRa vs. Ri 1,834 99 0 0

Ra vs. Ri 148 29 0 0

Model33 GRa vs. GRi 17,044 5,179 85 6

Ra vs. GRi 4,095 212 2 0

GRa vs. Ri 21,788 517 3 0

Ra vs. Ri 4,156 153 0 0
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compounds for Model33) it can be inferred that the
random actives have low similarity to both the GR in-
puts and Random inputs, leading to the conclusion that
morphing is capable of generating diverse sets of com-
pounds.

In the GR actives, compounds directly corresponding
to experimentally verified biologically active ligands
were also identified (Table 3, Figure 8). Specifically,
Model17 revealed two compounds that are present in the

IMG library, and another four active compounds were
discovered by Model33, three of them from the
ChEMBL17 and one from the IMG library.

These rediscoveries underscore Molpher’s utility for
compound generation and the importance of synergizing
with predictive models in active compound identi-
fication.

F I G U R E 7 The highest Tc distributions between the active and input sets for Model17 and Model33. Dashed lines separate
individual similarity subsets. Compound counts with Tanimoto coefficients of the compound pairs from the high similarity subset
(Tc>0.7) are depicted in green, from the medium similarity subset (0.4�Tc�0.7) in blue, and from the low similarity subset (Tc<0.4) in
red. Compounds were encoded as 1,024 bits long Morgan2 fingerprints.
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3.3.1.2 | Novel compound analysis
252 compounds from the Novel set were divided into
three subsets based on their similarity to the ChEMBL17
GR actives: the low-similarity subset (Tc<0.4) with 97
compounds, medium-similarity subset (0.4�Tc�0.7)
with 127 compounds, and high-similarity subset (Tc>
0.7) with 28 compounds. The distributions of the highest
Tc between the GR actives predicted by Model17 and
Model33 and ligands in the individual subsets of the
Novel set are illustrated in Figure 9, and the distribution
means are listed in Table 4.

Surprisingly, the average Tc of the predicted actives
remained essentially constant for both Model17 and
Model33, regardless of the similarity subset of the Novel
set they were compared to. This suggests that the as-
sumption of constant distance of actives predicted by
Model33 from the Novel set subsets was confirmed, but
the same was not true for Model17, where a higher sim-
ilarity of actives to the high-similarity subset than to the

low-similarity subset was expected. Additionally, the
results disproved the assumption that Model33 would
exhibit a higher average Tc than Model17. These find-
ings suggest that the predicted actives do not necessarily
resemble the new ligands that are introduced into the
training set, regardless of how much diversity they in-
troduce. Therefore, the difference in the number of ac-
tives predicted by Model17 and Model33, respectively, is

F I G U R E 8 ChEMBL17 compounds (given by their ChEMBL IDs) rediscovered by Molpher and predicted to be active by Model33.

F I G U R E 9 The distributions of the highest Tc between the GR actives predicted by Model17 (a) and Model33 (b) and ligands in the
individual subsets of the Novel set. The Novel set was divided into three subsets based on the Tc between each active in the Novel set and
its most similar active in the ChEMBL17: the low similarity subset (Tc<0.4), medium similarity subset (0.4�Tc�0.7), and high similarity
subset (Tc>0.7).

T A B L E 4 The distribution means of the highest Tc between
the GR actives predicted by Model17 and Model33 and ligands in
the individual subsets of the Novel set. Compounds were encoded
using 1,024-bit long Morgan2 fingerprints.

Low
similarity
(Tc<0.4)

Medium
similarity
(0.4�Tc�0.7)

High
similarity
(Tc>0.7)

Model17 0.18 0.18 0.16

Model33 0.18 0.20 0.17

16 of 24

Wiley VCH Mittwoch, 31.07.2024

2408 / 354134 [S. 421/429] 1

 18681751, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

inf.202300316 by U
niversity Palacky, W

iley O
nline L

ibrary on [30/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



based solely on the number of new compounds used for
their training and is not influenced by compound diver-
sity.

3.3.1.3 | KL divergence analysis
The distributions of the highest Tc between the Novel set
and the GRML or RML libraries shown in Figure 10 re-
veal a significant difference. This observation is further
supported by the high KL divergence value of 14.5,
which was calculated with the distribution of the highest
Tc between the Novel set and the RML library as a refer-
ence set. This value indicates a notable dissimilarity be-
tween these two distributions further reinforcing the no-
tion that the GRML and RML libraries cover different
parts of chemical space.

3.3.2 | Scaffold analysis

The BM scaffolds of the GR and Random inputs and ac-
tives were compared with those of the GRML and RML
libraries. Out of the 510,180 unique BM scaffolds in the
RML library, 1,842 were predicted to be active, of which
158 were also predicted as active in the GRML library
(Figure 11). Moreover, 220 RML BM scaffolds appeared
in the GRML library but were not predicted as active.
Notably, while the active BM scaffolds make up merely

0.36% of the RML scaffolds, they account for 2.6% of the
GRML scaffolds, highlighting Molpher’s efficiency in ex-
ploring the chemical space of GR-active compounds.

While a comprehensive visual inspection of all active
BM scaffolds is impractical, the most prevalent ones are
presented in Figure 12. Benzene was the most common
BM scaffold across the GRML and RML libraries, as
identified by both Model17 and Model33. The domi-
nance of this scaffold in drug-like molecules is well
known [41] and it has also been called a “trivial frame-
work” [73]. The benzylideneaniline (Figure 12a2) scaf-
fold in the GRML actives predicted by Model17 ranked
in the top three in all other sets except the Random ac-
tives predicted by Model17. The benzylidenebenzohy-
drazide (Figure 12a3) scaffold from the GR actives pre-
dicted by Model17 resembles the benzylidene-4-
phenylbutanehydrazide scaffold (Figure 12d3) from the
Random actives predicted by Model33. Further explora-
tion of the phenylindazole (Figure 12b2) scaffold from
the GR actives predicted by Model33 is reserved for the
following prospective validation section. In summary,
the scaffold analysis revealed a significantly larger num-
ber of BM scaffolds predicted to be active in the GRML
library than in the RML library, which indicates that di-
rected Molpher runs generated a set of predicted actives
that is not only larger, but also more diverse than the

F I G U R E 1 0 The distribution of the highest Tc between the Novel Set and the GRML (blue) or RML (orange) libraries. The
histograms are plotted with 100 bins.
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reference set. The most common predicted active BM
scaffolds were non-steroid.

3.3.3 | Prospective validation

Figure 13 illustrates the relationships between the num-
ber of BM scaffolds in the individual sets. 116 new BM
scaffolds were found in the Novel set, meaning that they
were experimentally identified as active between the
ChEMBL17 and ChEMBL33. Two of these were pre-
dicted as active in the GRML library (Figure 13). Be-
cause the GRML library was generated from unique ac-
tives from the ChEMBL17 and IMG libraries, these two
BM scaffolds can be considered recovered by Molpher
and prospectively validated as active. One of these BM
scaffolds was exclusively found in the GRML library
(Figure 13b), while the other was found in both the RML
and GRML libraries (Figure 13c). This evidence not only
confirms Molpher’s efficacy in generating active GR scaf-
folds but also, considering the challenging benchmark
imposed by the temporal split [74], the rediscovery of
two active compounds is a noteworthy achievement.

3.4 | Design of active ligands

3.4.1 | Pharmacophore model

A pharmacophore model (Figure 14) was constructed
containing two hydrogen bond acceptor features (radi-
us=1.5 Å), two lipophilic features (radius=1.0 Å), and
one essential hydrogen bond acceptor plus donor feature
(radius=1.0 Å). The model also included a volume con-
straint defined by a radius of 2.0 Å around every heavy
atom in ligand superposition.

For the DUD� E benchmark set, both complete
matching, using all five features, and partial matching,
utilizing either three or four features, were evaluated
(Table 5). When all five features were used, only 2.99%
of actives and 0.00% of decoys were recognized, exclud-
ing a substantial number of active compounds. Employ-
ing the four-feature pharmacophore model identified
22.0% of active compounds and 1.14% of decoys (i. e.,
false positives), producing the LR+ of 19.30 and Sen of
0.22. Upon implementing a three-feature partial match,
there was a reduction in the LR+ to 6.36, accompanied
by a slight rise in the Sen to 0.31. Given the reduced dis-
criminative ability of models with five and three

F I G U R E 1 1 Venn diagram illustrating the overlaps between the GRML and RML libraries, as well as the GR and Random actives.
The diagram was generated using the venny4py software, version 1.0.0.
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F I G U R E 1 2 Examples of the most common active predicted scaffolds by: (a) Model17 at GRML, (b) Model33 at GRML, (c) Model17
at RML, and (d) Model33 at RML.

F I G U R E 1 3 (a) Venn diagram illustrating the overlaps in the number of BM scaffolds between the GR and Random actives and two
input sets. The Novel set is outlined in dark blue. (b) The scaffold from the GRML library that was experimentally validated as active in the
Novel set. (c) The scaffold from both the GRML and RML libraries that was experimentally validated as active in the Novel set. The Venn
diagram was generated using the venny4py software, version 1.0.0.
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features, the four-feature pharmacophore model was
selected for subsequent investigations due to its optimal
balance between the Sen and LR+ .

3.4.2 | Identification and prioritization of
active ligands

Following the design of active ligands workflow
(Figure 5), a total of 22,527 unique morphs were pre-
dicted as active by Model33 or Model17 (Table 2). Of
these, 20,338 morphs had a Quantitative Estimation of
Drug-likeness (QED) greater than 0.4, 16,242 morphs
had a NIBR Severity Score below 10, and 10,174 morphs
had a MolSkill score less than 9. Conformations were

generated for these 10,174 morphs, and 23,652
conformations passed the four-feature pharmacophore.
These conformations corresponded to 1,699 morphs.
Subsequent docking and another use of the four-feature
pharmacophore model reduced the number of con-
formations to 4,009, representing 54 morphs (Supporting
information) comprising 34 distinct scaffolds. Upon visu-
al inspection, 34 morphs (Supporting information) with
20 unique scaffolds (Figure 15) were determined to be
stable. Of these, 12 molecules (with 8 scaffolds,
Figure 15b) were flagged with warnings because of is-
sues like strained ring systems, while 22 morphs with 15
unique scaffolds (Figure 15c) had no warnings. Intrigu-
ingly, 13 of these scaffolds differed from known GR

F I G U R E 1 4 Structure-based five-feature pharmacophore model of a GR agonist. Five distinct agonist/GR complexes were used to
construct the model: dexamethasone (PDB ID: 1P93 [66]), pyrazole-based agonist (PDB ID: 3E7 C [67]), indazole-based agonist (PDB ID:
4CSJ [68]), pyrimidine-based agonist (PDB ID: 6EL7 [69]), and next-gen indazole-based agonist (PDB ID: 7PRX [70]). The following
features were used: F1 and F4 (cyan): hydrogen bond acceptors with a radius of 1.5 Å; F2 and F5 (green): lipophilic features with a radius
of 1.0 Å; F3 (salmon): a hydrogen bond acceptor and donor, feature with the radius of 1.0 Å. V1 (grey) is the volume constraint with a
radius of 2.0 Å, a hit conformation must lie within this mesh. This figure was created using Molecular Operating Environment 2019.

T A B L E 5 Counts of hits identified in the DUD� E benchmark set by the three-, four- and five-feature pharmacophore model.
Percentages are shown in brackets. Pharmacophore model quality was evaluated using the positive likelihood ratio (LR+) and model
sensitivity (Sen). Four-feature pharmacophore (in bold) yielded the optimal balance between the Sen and LR+ .

Three-feature
pharmacophore

Four-feature
pharmacophore

Five-feature
pharmacophore

Actives 145/468 (31.0%) 103/468 (22.0%) 14/468 (2.99%)

Decoys 737/15150 (4.86%) 173/15150 (1.14%) 0/15150 (0.00%)

LR+ 6.36 19.30 Inf

Sen 0.31 0.22 0.03
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ligands, while two (including the trivial benzene scaffold
[73]) were already present in ChEMBL33 (Figure 15c).

Finally, the filtered morphs were prioritized using the
rank by rank consensus (RbR) method. This method ag-
gregates the rankings from 100 individual RFR models to
determine a consensus rank for each morph. Specifically,
the consensus rank for morph i, denoted as RbRi, is cal-
culated using the formula RbRi ¼

1
n

P
j r

j
i, where nis the

total number of RFR models (i. e., 100), and rjirepresents
the rank of morph ias assigned by the j-th RFR model.
These ranks are assigned based on the sorting of pre-
dicted pEC50 values from each model. This consensus
approach ensures that the final ranking of morphs re-
flects a comprehensive evaluation across all predictive
models, enhancing the reliability of the prioritization
process.

4 | CONCLUSIONS

In this study, the capability of Molpher to generate bio-
logically active ligands for the glucocorticoid receptor
(GR) was assessed. The ChEMBL database and an in-
ternal IMG library, comprising 24,511 chemically diverse

compounds experimentally tested for GR activity in a
primary luciferase reporter cell assay, served as the com-
pound sources for Molpher and random forest models.
Two virtual libraries were generated using Molpher: one
by exploring chemical space between known GR ligands
(GRML) and another by exploring space between ran-
dom compounds (RML). The compounds from these li-
braries were then classified as either active or inactive by
a random forest classifier, with its applicability domain
established through Mondrian conformal prediction. An
extensive comparison of the GRML and RML libraries
indicated that the GRML library was richer in predicted
actives than the RML library, and the actives in the
GRML library were distinct from the chemical back-
ground represented by the RML. By prospective analysis,
it was demonstrated that Molpher has the potential to
generate compounds later confirmed experimentally as
active on the GR. A set of 34 novel potential GR actives
has been identified, with their synthesis and subsequent
testing planned for future studies. Furthermore, the
methodology outlined in this manuscript can serve as a
general workflow for assessing computationally gen-
erated ligands, especially for those potentially active
against challenging-to-dock targets like the GR.

F I G U R E 1 5 BM scaffolds of 34 morphs (Supporting information) predicted to be active on the GR. (a) BM scaffolds of compounds
that were manually annotated as not stable. (b) BM scaffolds of compounds that were manually annotated with warnings. (c) BM scaffolds
of compounds that were manually annotated without warnings. Two scaffolds already present in ChEMBL33 are outlined in red.
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com/Iagea/GRML analyses).
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found online in the Supporting Information section at
the end of this article: The file designed ligands.xlsx
containing the list and structures of 54 GR ligands with
their QED, NIBR severity score, MolSkill score, RBR
consensus ranking score, the result of the manual anno-
tation and remarks, if available.
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